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Abstract
1.	 Wildlife movement is an important process affecting species population biology 

and community interactions in myriad ways. Studies of wildlife movement have 
focused on retrospectively estimating movements of small numbers of individuals 
by outfitting them with GPS and telemetry tags. Recent developments in spatial 
capture–recapture modelling permit the integration of movement models that 
can estimate the movement of untagged and undetected individuals. Additionally, 
hidden Markov movement models provide a framework for forecasting individu-
als' movements, which may be valuable in the conservation of threatened species 
facing risks that vary across space and time.

2.	 We describe maximum likelihood estimators for spatial capture–recapture mod-
els integrated with simple, biased and correlated random walk movement models 
formulated as hidden Markov models. Additionally, we demonstrate how to fore-
cast wildlife movement based on these models and hidden Markov model algo-
rithms. We conducted a simulation study to test the performance of the models' 
abundance estimators and movement forecasts when fit to data simulated under 
different movement models. We also fit the models to spatial capture–recapture 
data collected on North Atlantic right whales off the Atlantic Coast of the south-
eastern United States.

3.	 Random walk movement models improved abundance estimation and movement 
forecasts in our simulation study and received greater support from the data in 
the right whale case study than did activity centre movement models.

4.	 Forecasts of wildlife movement made under integrated spatial capture–recapture 
movement models will be most valuable when individuals have been observed 
recently, when sampling for individuals is extensive and efficient, and when the 
scale of individuals' movements is small relative to the scale of the study area and 
sampling process.
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1  |  INTRODUC TION

Wildlife movement is an important process affecting individual space 
use, migration, encounter rates with predators, prey and anthropo-
genic threats, population dynamics and gene flow (Matthiopoulos 
et al., 2015; Morales et al., 2010; Nathan et al., 2008). Therefore, 
wildlife managers and conservationists often seek to understand 
wildlife movement to manage habitat features and anthropo-
genic activities in areas and times where wildlife are expected to 
be (Runge et al., 2014). Commonly, researchers outfit animals with 
telemetry or GPS tags to record the animals' movements through 
time (Cagnacci et al., 2010). However, recent developments in spatial 
capture–recapture (SCR) allow researchers to model the movement 
of uniquely identifiable individuals without telemetry or GPS tags 
(McClintock et al., 2021).

Objectives of individual wildlife movement modelling often 
include imputing an individual's trajectory (i.e. sequence of loca-
tions) between locations collected by GPS tags; estimating move-
ment velocities, turning rates and points or habitat features of 
attraction and repulsion; and inferring an individual's behavioural 
state sequence (Hooten et al.,  2017). Researchers make infer-
ences on these subjects using hidden Markov models, state space 
models and diffusion processes (Hooten et al.,  2017; Patterson 
et al.,  2017). However, inference is often restricted to a small 
number of individuals, because costs and logistical constraints 
limit the number of tagged individuals, that is individuals that 
are outfitted with GPS or telemetry tags. Additionally, although 
many studies have focused on predicting the future distribution of 
wildlife populations (e.g. Hazen et al., 2017), few have focused on 
forecasting individuals' future movements given their past loca-
tions and estimated movement rates (but see Randon et al., 2022). 
Such forecasts could be useful in further studying the individuals 
or mitigating threats to them.

The movements of all individuals in a population, not just tagged 
individuals, may be critically important to understand and forecast, 
especially in endangered species facing spatially and temporally 
varying threats. SCR models have been used to estimate wildlife 
density, habitat selection and space use from data collected from 
untagged individuals (Royle, Sollman, et al.,  2013). Open popu-
lation SCR models have been used to estimate the movement of 
individuals' activity centres, that is home range centres (Gardner 
et al., 2010; Glennie et al., 2019). Bischof et al. (2020) forecasted the 
annual population size and distribution of wolverines based on the 
annual activity centre movement, recruitment and mortality rates 
estimated with an open population SCR model. Additionally, McClin-
tock et al. (2021) proposed a framework for integrating random walk 
(RW) movement models with SCR. These integrated SCR movement 
models have been implemented primarily in Bayesian frameworks. 
For instance, Gardner et al. (2022) simulated data from and fit SCR 
models integrated with correlated RW and Langevin movement 
models; Hostetter et al.  (2022) estimated polar bear density and 
movement with SCR models integrated with simple and correlated 
RWs; and Chandler et al. (2021) estimated white-tailed deer density 

and movement with SCR models integrated with biased RWs. Inte-
grated SCR movement models could also allow researchers to fore-
cast the movements of individuals.

We describe a SCR model integrated with hidden Markov mod-
els for simple, biased and correlated RWs using a maximum likeli-
hood estimation framework. Our model differs from other maximum 
likelihood-based SCR models (Efford & Schofield,  2020; Glennie 
et al., 2019) by modelling the movement of individuals rather than 
their activity centres and by permitting bias and correlation in move-
ment direction and speed. As with the conventional activity centre 
model used in SCR analyses, the biased RW accounts for the bias of 
an individual's movement toward a point of attraction, an important 
property of some species' movement behaviours. Each RW exhibits 
another important property of animal movement: serial correlation 
of an individual's locations. Additionally, the correlated RW exhibits 
serial correlation of an individual's speed and direction. We show 
through a simulation study that these models can be fit to relatively 
sparse data characteristic of SCR studies. We also evaluate model 
performance in estimating abundance and forecasting movements 
of individuals. Finally, we estimate North Atlantic right whale (Euba-
laena glacialis) population size, population dynamics and movement 
in the coastal waters of the southeastern United States using inte-
grated SCR movement models.

2  |  METHODS

2.1  |  Model formulation

Consider a study region, S, containing an unknown number of in-
dividuals, N. Let S be partitioned into m subregions. SCR sampling 
is conducted over T occasions, during which n individuals are de-
tected at least once, and n ≤ N. Sampling may be conducted using 
a fixed array of detectors or through search-encounter surveys. 
Individuals must be uniquely marked during their first detection or 
be identifiable through natural markings. The encounter history for 
individual i, yi, is a vector of length T, where yi,t = 1 if individual i 
was detected on occasion t, and yi,t = 0 otherwise. When individual 
i is detected on occasion t, the subregion in which it is located, ui,t, 
and auxiliary data such as the distance between the individual and 
detector making the detection, di,t, are recorded. Here, we assume 
that individuals can be detected at most once during an occasion, 
although see Hostetter et al.  (2022) for an approach to relax this 
assumption.

We formulate a SCR model using a hidden Markov model to ac-
count for the partially observed movement trajectories of individ-
uals through subregions of S and a thinned Poisson point process 
describing the number of individuals observed at least once. The 
hidden Markov model contains three components: the initial state 
distribution, δ, the state transition matrix, Γ, and the state-dependent 
detection process, P(yi,t, ui,t, di,t). In this context, an individual's state 
may correspond to the subregion in S in which it is located or to 
some combination of its current subregion, past subregions and 
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activity centre. In a model where states have one-to-one correspon-
dence with subregions, δ is a row vector of length m, and δ j is the 
probability that an individual is in state j, that is subregion j, on the 
first sampling occasion. Then, Γ is an m × m matrix whose element in 
the j-th row, k-th column, Γ j,k, is the probability that an individual in 
state j at time t will be in state k at time t + 1. Finally, P(yi,t, ui,t, di,t) is 
an m × m diagonal matrix whose j-th diagonal element is the proba-
bility of observing yi,t, ui,t and di,t given that individual i is in state j 
at time t. The likelihood of individual i's encounter history under the 
hidden Markov model is:

where ε is a column vector of ones of length m.
In all models described hereafter, the state-dependent detec-

tion process, P(yi,t, ui,t, di,t), constrains the probability of detecting 
an individual in a subregion in which it is not located to 0, that is 
the model assumes false-positive detections cannot occur. There-
fore, when yi,t = 1 and ui,t = j, only the j-th diagonal element of P(yi,t, 
ui,t, di,t) is non-zero. In studies where d is collected, the j-th diago-
nal element of P(yi,t, ui,t, di,t) is g(di,t), a decreasing function of di,t, 
as in distance sampling (Buckland et al.,  2004). For instance, the 
half-normal, P
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where g0 is the probability of detecting an individual located at 0 
distance from a detector, and σd and βd describe the decay function 
of detection probability. When d is not relevant, the j-th diagonal 
element of P(yi,t, ui,t, di,t) may be some constant, state-varying, time-
varying or effort-varying detection probability. When yi,t = 0, P(yi,t, 
ui,t, di,t) holds the probabilities of an individual not being detected 
given it is in each state. These values are one minus the detection 
probability for each state when d is not relevant. When d is relevant 
to the detection process, the probability of an individual in state j not 
being detected is 1 −

1

|sj| ∫sj g(d)dsj, where sj is the j-th subregion of S 
and d is the distance from each point in sj to the location of the near-
est detector (Crum et al., 2021; Gowan et al., 2021). This formula-
tion assumes that the location of an individual within sj is distributed 
uniformly. When different points in sj are nearest different detec-
tors, the detection function must be integrated over subregions of 
sj. When sj must be partitioned into l subregions, the probability that 
an individual in state j is not detected is 1 −

1

�sj�
∑l

k=1
∫
sj,k
g(d)dsj,k , 

where sj,k is the k-th subregion of sj. Partitioning sj for only the de-
tection process, rather than both the detection and state transition 
processes, can significantly reduce the computation required for the 
model. In application, we use numerical integration to calculate the 
probabilities that an individual is not detected given its state.

In a simple RW movement model, the states of the hidden 
Markov model have one-to-one correspondence with subre-
gions in S, meaning the model will have m states. In such a model, 
δ may be uniformly distributed, � =
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1

m
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1

m
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)
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according to some spatially explicit environmental covariates, Z, 
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. Here, Z is a matrix with 

m rows, corresponding to the m subregions, and with one column 
for each covariate, and β is a vector with length equal to the num-
ber of covariates. State transition probabilities are a function of the 
distance between the centres of subregions and may be a function 
of environmental covariates, for example �j,k =

f(dmove,j,k ,Zk� )∑m

l=1
f(dmove,j,l ,Z l�)

, where 
dmove,j,k is the distance between the centres of sj and sk, and f is a 
function of this distance. For instance, f may approximate the ex-
ponential distribution, f

(
dmove,j,k ,Zk�

)
= exp

(
−

dmove,j,k

�move
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)
 , where 

σmove describes the scale of an individual's movement. We share β 
across δ and Γ for model simplicity, but different sets of parameters 
could be used in practice. Additionally, we measure dmove with Euclid-
ean distance, but the model could be modified to use least-cost dis-
tances (Dupont et al., 2021; Royle, Chandler, Gazenski, et al., 2013).

In a biased RW movement model, an individual's state describes 
the subregion in which it is located and the subregion in which the 
activity centre or source of bias is located. Therefore, such a hid-
den Markov model will have m2 states. We formulate δ such that 
an activity centre is distributed equivalently to the initial location 
in the simple RW described above. Then, given an activity centre is 
located in sj, the initial subregion in which the individual is located 
is distributed following the j-th row of Γ as described in the sim-
ple RW model. Assuming that an individual's activity centre remains 
constant over the course of sampling, Γ is a m2 × m2 block diagonal 
matrix. Block matrices of Γ are of dimension m × m, and the j-th block 
describes the transition probabilities among subregions of S given an 
individual has an activity centre in sj. Elements of each block matrix 
are identical to those of Γ under the simple RW. However, for block 
j, dmove,k,l is the distance from the centre of sl, the individual's loca-
tion at time t + 1, to the weighted average of the centres of sk and sj, 
the individual's location at time t and activity centre, respectively, √(

xl−�xk−(1−�)xj
)2

+
(
yl−�yk−(1−�)yj

)2, where (xj, yj) is the cen-
tre point of sj. Here, ρ is a parameter bounded between zero and 
one that describes the strength of bias toward the activity centre. 
When ρ is one, the biased RW simplifies to the simple RW, and when 
ρ is zero, the biased RW simplifies to a static activity centre model, 
where an individual's location at time t + 1 depends only on the loca-
tion of its activity centre.

In a correlated RW movement model, an individual's state de-
scribes both the current and previous subregions in which it has 
been located. In the case of a second-order correlated RW, a hid-
den Markov model will have m2 states. We formulate δ identically 
to our formulation in the biased RW, except here, instead of an in-
dividual's activity centre being uniformly distributed, its location 
prior to its initial location is uniformly distributed. Elements of Γ 
are formulated in the same way as in the simple RW model. How-
ever, dmove,j,k,l is the distance from the centre of sl, the individual's 
location at time t + 1, to the expected trajectory of movement for 
an individual in sk at time t, having travelled from sj at time t − 1, 
√(
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(
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Here, γ, bounded by 0 and 1, and ω, bounded by –π and π, are pa-
rameters describing the correlation in the movement length and di-
rection across time. Additionally, Γ is a sparse matrix because only 
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an individual in a state corresponding to being in sk at time t can 
transition to a state corresponding to being in sk at time t − 1.

In this SCR model, the hidden Markov model describes pro-
cesses for the movement and detection of individuals in the 
population of interest, and a Poisson point process describes 
the number of individuals in the population, that is abundance, 
and their expected distribution at the beginning of the time se-
ries, 

(
exp

(
�0 + Z1�

)
, exp

(
�0 + Z2�

)
, … , exp

(
�0 + Zm�

))
, where 

β0 is an intercept effect. Following Borchers and Efford  (2008) 
and Glennie et al.  (2019), we formulate the model likelihood 
conditional on n individuals being observed at least once. The 
probability of an individual being observed at least once, p*, is 
1 − �

�∏T−1

t=1
P
�
y i,t = 0

�
�

�
P
�
y i,T = 0

�
�. The likelihood of n individu-

als being observed at least once under the Poisson point process is 
(Dp∗)nexp( −Dp∗)

n !
, where D is the expected population abundance, that is 

the parameter that estimates N. The full model likelihood follows as:

We wrote likelihood functions in R and C++ using the Rcpp 
package and use numerical optimization for maximum likelihood 
estimation (Eddelbuettel & Francois, 2011; Eddelbuettel & Sander-
son, 2014; R Core Team, 2019).

2.2  |  Density and movement estimation

The location of an individual during an occasion can be estimated 
using the forward–backward algorithm (Zucchini et al., 2016). Let αi,t 
be the forward probabilities, and γi,t be the backward probabilities 
for individual i on occasion t where

Here, αi,t and γi,t are vectors of length m, and the j-th elements are 
the relative probabilities that individual i is located in sj on occasion 
t given individual i's encounter history before and including occa-
sion t and its encounter history after occasion t, respectively. The 
dot product of αi,t and γi,t is the likelihood of individual i's encoun-
ter history, Li. The distribution of the individual's location given its 
entire encounter history is the elementwise product of αi,t and γi,t 
scaled to sum to one, (�i,t ◦ � i,t)

Li
. It follows that the realized population 

density on occasion t is 
∑n

i=1

(�i,t ◦ � i,t)
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average realized population density over all sampling occasions is 
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�
, where αn + 1,t and 

γn + 1,t are the forward and backward probabilities for an individual 
that was never observed. Additionally, Ln + 1 is the likelihood of an in-
dividual that was never observed, �

�∏T−1
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P
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�
�

�
P
�
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�
�.  

The expected population density, which does not explicitly account 

for individuals' encounter histories, on occasion t is the product of 
expected abundance, the initial state vector and t – 1 state transition 
matrices, D��t−1. The average expected density over all sampling oc-
casions is 1

T

∑T

t=1
D��t−1. Each expression of density results in a vector 

whose j-th element is the estimated number of individuals in state j 
over the time period of interest.

2.3  |  Hidden Markov model forecasting

Given the observed data and estimated parameters from the model 
described above, individuals' future locations can be forecast. The 
first step in forecasting locations is to estimate an individual's loca-
tion at time T, the last sampling occasion. Here, we use the forward–
backward algorithm to estimate the distribution of the location of 
individual i, which was observed at least once over the previous T 
occasions (Zucchini et al., 2016). At time T, γi,T is ε, therefore this 
distribution is αi,T scaled to sum to one, �

�∏T−1

t=1
P(y i,t ,ui,t ,di,t)�

�
P(y i,T ,ui,T ,di,T)

Li

 . 
Then, on sampling occasion T + h, the distribution of the individ-
ual's state given the observed data from sampling occasions 1 to 
T is �i,T�

h

Li
, whose j-th element is the probability that the individual 

will be in sj. Additionally, there are an estimated D(1 − p∗) individ-
uals that were unobserved on occasions 1 to T. The locations of 
these individuals can be forecast collectively. On occasion T, they 
are distributed according to a Poisson point process with intensity 
D(1− p∗)�n+1,T

Ln+1
. Then, on sampling occasion T + h, the forecasted distri-

bution of the N – n individuals is D(1− p∗)�n+1,T�
h

Ln+1
. The joint likelihood 

of all individuals' locations under the forecast on occasion T + h 
is 
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where the j-th diagonal element of P
(
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)
 is a one when in-

dividual i was located in sj on occasion T + h, and all other 
elements are zero. Additionally, the joint likelihood of 
all individuals' encounter histories on occasion T + h is 
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where q individuals were observed on occasion T + h that had not 
been observed on or before occasion T, and p*T + h is the probability 
of detecting an individual on occasion T + h that had not been ob-
served on or before occasion T.

2.4  |  Simulation study

We simulated 1000 closed population SCR data sets under three 
scenarios. In the first scenario, individuals moved according to a 
simple RW; in the second, individuals moved according to a biased 
RW; and in the third, individuals moved according to a correlated 
RW. In each scenario, a population of 100 individuals was simulated 
with a uniform initial density. The study region, S, was square, 1600 
unit2, and divided into 1600 one unit2 subregions. We simulated in-
dividuals' movements across subregions following the exponential 
distribution, that is f

(
dmove,j,k

)
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)
. Individuals' loca-

tions were uniformly distributed within the subregions in which they 
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were located. Data were simulated over 20 sampling occasions. On 
each sampling occasion, individuals were subject to sampling from 
10 parallel line transects that were 20 units long and had two-unit 
spacing. The probability of an individual being detected was a half-
normal function of its distance to the closest transect. We provide 
additional simulation details in Appendix  1. For each scenario, we 
fit SCR models to data from the first 10 sampling occasions. We di-
vided S into 400 four-unit2 subregions for models fit to simulated 
data, which decreased the computation required for each model, 
especially the biased and correlated RW models. We estimated re-
alized abundance, that is the sum of realized density across S, (Ef-
ford & Fewster, 2013) and calculated the likelihood of individuals' 
locations and encounter histories over the next 10 sampling occa-
sions under forecasts from each model. Additionally, we evaluated 
the calibration of forecasts from each model, that is we calculated 
the proportions of locations falling within forecasted confidence 
regions of varying confidence levels. This approach is analogous to 
using pseudo or quantile residuals to test for goodness of fit (Dunn & 
Smyth, 1996; Zucchini et al., 2016). For the first scenario, we fit SCR 
models with static activity centre, that is a biased RW with ρ fixed to 
zero, and simple RW movement models. For the second scenario, we 
fit models with static activity centre, simple and biased RW move-
ment models. For the third scenario we fit models with static activity 
centre, simple and correlated RW movement models. In all scenarios, 
we fit models with exponentially distributed movement, matching 
the distribution for simulated movement. We provide an R package, 
scrrw, with functions to simulate encounter histories, fit SCR move-
ment models and forecast individuals' movements.

2.5  |  North Atlantic right whale 
abundance and movement

The North Atlantic right whale is an endangered large whale species 
that inhabits the coastal waters of the eastern United States and Can-
ada. Some right whales migrate to the coastal waters of the south-
eastern United States, hereafter referred to as the Southeast, each 
winter (Gowan et al., 2019; Krzystan et al., 2018). Throughout their 
range, right whales are at risk of being struck and killed or severely 
injured by vessels; therefore, understanding and predicting their 
movements could provide valuable information to managers work-
ing to mitigate the threat of vessel strikes (Crum et al., 2019; van der 
Hoop et al., 2014). We fit open SCR models to right whale encounter 
history data collected from aerial surveys off the Southeast between 
1 December 2009 and 31 March 2010 (see Gowan et al.,  2021; 
Gowan & Ortega-Ortiz, 2014 for detailed descriptions of data col-
lection). We divided our study region (Appendix 2 in Figure S1) into 
772 100 km2 sub-regions for the model. We augmented the models 
described in the model formulation section with two additional un-
observable states, one for individuals that had yet to immigrate to 
the Southeast and another for individuals that had already emigrated 
from the Southeast or had died, although we expect deaths were 
rare as right whale annual survival exceeds 0.95 (Pace et al., 2017). 

The probability that an individual not in the Southeast immigrated to 
the Southeast, τ, was modelled as a quadratic function of t, the num-
ber of days since 1 December, �t =

1

1+ exp( − (�0 + �1∗t + �2∗t
2))

. The prob-
ability that an individual in the Southeast remained in the Southeast, 
φ, was modelled as a linear function of the number of days since 
1 December, �t =

1

1+ exp( − (�3 + �4∗t))
. The model permitted migration 

during one state transition every 10 days, and the population was 
closed on all other transitions. We modelled daily movement accord-
ing to activity centre, simple and correlated RW movement models 
where movement was an exponentially declining function of dis-
tance. In the activity centre model, individuals' activity centres could 
move every 10 days and were independent of past activity centres. 
We simplified the correlated RW model to shorten computation time 
by accounting only for correlation in movement direction and clas-
sifying movements into four categories, north, south, east and west. 
For each movement model, we tested a null model without environ-
mental covariates and a model that included quadratic effects of 
depth and sea surface temperature and a linear effect of wind speed, 
f
(
dmove,j,k ,Zk�

)
= exp

(
−

dmove,j,k

�move

+ �5 ∗ sstk + �6 ∗ sst
2
k
+ �7 ∗depthk + �8 ∗depth

2

k
+ �9 ∗wsk

)
  . 

We fit models to the full dataset and used AIC for model comparison 
(Burnham & Anderson,  2002). Additionally, we fit models to a re-
duced dataset, which omitted every 10th sampling occasion starting 
with the seventh occasion, that is the seventh, 17th, 27th, etc. To 
evaluate the forecasting skill of each model, we generated forecasts 
for the locations of all individuals, previously observed and unob-
served, on the omitted occasions based on the models' parameter 
estimates and the data collected preceding each omitted occasion. 
We compared models' forecast skill by comparing the likelihood of 
omitted data under forecasts from each model.

3  |  RESULTS

3.1  |  Simulation study

SCR models estimated abundance with relative bias ≤5% in most 
cases, regardless of movement model specification (Table 1). Mean 
square error of abundance estimates was the smallest in cases where 
the specified movement model matched the model used to simulate 
the data (Table 1). Models that matched the simulating model also 
predicted future locations of individuals with the highest likelihood, 
and their forecasts were well calibrated, that is the confidence level 
of forecast regions matched the proportion of locations that fell 
within them (Figure 1).

When individuals' movements were simulated according to a 
simple RW, forecasts from the activity centre model became less 
likely relative to the simple RW forecasts as time since the last sam-
pling occasion increased (Appendix 1 in Figure  S3). Additionally, 
forecast regions generated by the activity centre model contained 
fewer locations of individuals than expected and this miscalibration 
worsened over time (Appendix 1 in Figure S4).

When individuals' movements were simulated according to 
a biased RW, the likelihoods of the activity centre and simple RW 
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forecasts were similar and lower than the likelihood of the biased 
RW forecast on the first forecasted occasion. Following the first 
forecasted occasion, the likelihoods of the activity centre forecasts 
remained the same across time relative to the biased RW forecasts, 
whereas the likelihoods of the simple RW forecasts decreased over 
time relative to the biased RW forecasts (Appendix 1 in Figure S7). 
Forecasted regions generated by the activity centre model contained 
fewer locations of individuals than expected, while those generated 
by the simple RW model contained more locations than expected. 
This miscalibration increased with time (Appendix 1 in Figure S8).

When individuals' movements were simulated according to a 
correlated RW, the likelihoods of the activity centre forecasts de-
creased sharply over time relative to the correlated RW forecasts, 
while the likelihoods of the simple RW forecasts decreased over the 
first few occasions and then plateaued relative to the correlated RW 
forecasts (Appendix 1 in Figure S11). Forecast regions generated by 
the activity centre and simple RW models contained fewer locations 
of individuals than expected. This miscalibration was worse in the 
activity centre model and worsened with time under both models 
(Appendix 1 in Figure S12).

3.2  |  North Atlantic right whale 
abundance and movement

Aerial surveys were conducted on 77 days between 1 December 
2009 and 31 March 2010 and observed 214 individual right whales 
at least once. Individuals were observed an average of 4.1 times 
(range: 1–17). Abundance estimates were smallest for models with 
an activity centre movement model and largest for models with a 
simplified correlated RW movement model (Table 2). The corre-
lated RW movement model received the most support in the data 
followed by the simple RW and then the activity centre move-
ment model (Table  2). However, data omitted from the reduced 
data set were more likely under forecasts generated by the simple 
RW than under the correlated RW (Table 2). The correlated and 

simple RW models estimated that right whales moved 26–35 km 
per day on average (Table  2). Models that included the effects 
of environmental covariates on movement received considerably 
greater support in the data and generated better forecasts than 
models without environmental covariates (Figure 2). These mod-
els all estimated that right whales moved to areas of lower wind 
speeds and depths around 20 m (Appendix 2 in Figure  S2). The 
simple RW and activity centre models estimated that right whales 
moved to areas with sea surface temperatures around 14°C, while 
the correlated RW model produced unreasonable estimates of the 
association between right whale movements and sea surface tem-
perature (Appendix 2 in Figure S2).

4  |  DISCUSSION

We describe a maximum likelihood estimator for a SCR model inte-
grated with RW movement models and a framework to forecast fu-
ture locations of wildlife. Our simulation study and right whale case 
study demonstrate the value of using more realistic and complex 
movement models than static activity centre models. Incorporating 
complex space use or movement models into SCR can reduce bias 
in abundance estimates (Chandler et al., 2021; Royle, Chandler, Sun, 
et al., 2013). Likewise, the RW movement models improved estima-
tion of abundance and forecast skill in most cases. The activity cen-
tre model outperformed only the simple RW model when analysing 
data generated from a biased RW. Additionally, in our right whale 
case study, RW models received considerably more support in the 
data and predicted out-of-sample data with higher likelihood than 
did activity centre models.

Integrating SCR and movement models can address many ques-
tions important to ecology and conservation (McClintock et al., 2021). 
Here, we are interested in where the individuals in a population will 
be located in the near-term future. A SCR model addresses the ques-
tion of how many individuals are in the population, while a hidden 
Markov model provides means to forecast each individual's location 

TA B L E  1  Properties of spatial capture–recapture abundance estimates. One thousand data sets each were simulated with 100 individuals 
following a simple random walk, biased random walk or correlated random walk movement model. Spatial capture–recapture models with 
activity centre, simple random walk, biased random walk and correlated random walk movement models were fit to the simulated datasets 
to estimate realized abundance. We calculated bias (the average difference between estimated and true abundance), confidence interval 
coverage (the proportion of estimated confidence intervals containing the true value of abundance), confidence interval size (the average 
width of abundance confidence intervals) and mean square error (the average squared difference between estimated and true abundance).

Simulating movement model Fitted movement model Bias
Confidence interval 
coverage

Confidence 
interval size MSE

Simple random walk Activity centre 11.38 0.898 103.48 836.20

Simple random walk 2.56 0.953 92.54 511.66

Biased random walk Activity centre 3.83 0.942 89.10 504.24

Simple random walk −4.47 0.927 82.92 531.24

Biased random walk 1.80 0.942 88.91 499.02

Correlated random walk Activity centre 4.82 0.930 85.60 504.65

Simple random walk 1.26 0.951 81.48 402.57

Correlated random walk 2.54 0.944 79.75 390.65
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given their encounter histories and the estimated model parameters 
(Royle, Chandler, Gazenski, et al., 2013; Zucchini et al., 2016). Such 
an integrated model allows for the estimation and forecasting of 
individuals' locations, regardless of whether they have been previ-
ously observed or tagged.

This application could be especially useful in monitoring and 
mitigating threats to endangered species, like the right whale. 
Right whales are at risk of vessel strikes throughout their range, 
and many management and outreach activities are used to mit-
igate this threat (Crum et al.,  2019; van der Hoop et al.,  2014). 

F I G U R E  1  Calibration of individuals' forecasted locations one and 10 sampling occasions in the future (denoted by each panel's label) 
under spatial capture–recapture models with activity centre (blue), simple random walk (yellow), biased random walk (grey) and correlated 
random walk (red) movement models. We simulated 1000 datasets of 100 individuals moving according to simple, biased and correlated 
random walks (denoted by each panel's label) over 20 sampling occasions. We fit spatial capture–recapture models to the first 10 occasions 
and forecasted individuals' locations for the next 10 occasions. For individuals that were observed during the first 10 occasions, we 
calculated the proportion of their locations over the final 10 occasions that fell within forecast regions of varying confidence levels. Thick 
lines depict the mean of this proportion, and the bands include 95% of the proportions across the 1000 simulations. The black dashed line 
depicts perfect calibration. Models with calibration falling above the dashed line generate forecasts that include fewer true locations than 
expected and vice versa for models with calibration below the dashed line.
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Forecasting right whale movements could provide valuable in-
formation to plan and prioritize activities, such as dynamically 
enforced speed restrictions and broadcast notices to mariners. Ad-
ditionally, forecasts could inform where monitoring effort should 
be allocated to observe individuals that have yet to be observed 
or track individuals of interest, such as reproductive females in 
the right whale population. However, when a species' movements 
are associated with temporally dynamic environmental covariates, 
forecasts of those covariates will be needed and will introduce an 
additional source of uncertainty (Payne et al.,  2017). Movement 
forecasts should also be evaluated with out-of-sample data. In our 

right whale case study the correlated RW model with environmen-
tal covariates received the most support in the data according to 
AIC. However, that model estimated unreasonably high densities 
during one 10-day period in a few subregions at the edge of the 
study region. These subregions were not surveyed and had high 
and low sea surface temperatures, which resulted in the model es-
timating an unreasonable association between right whale move-
ment and sea surface temperature (Appendix 2 in Figure S2). The 
likelihood of out-of-sample data under forecasts from each model 
exposed this artefact, as the simple RW forecasts clearly outper-
formed forecasts of the correlated RW.

TA B L E  2  North Atlantic right whale superpopulation (N̂ ) and movement scale (�̂move) in the southeastern United States between 1 
December 2009 and 31 March 2010. Six spatial capture–recapture models were tested, two each with activity centre, simple random 
walk and correlated random walk movement models. One version of each model (AC, activity centre; SRW, simple random walk; and CRW, 
simplified correlated random walk) was formulated without environmental covariates included in the movement process (null), and the other 
version included quadratic effects of depth and sea surface temperature and a linear effect of wind speed (full). Models were fit to the full 
dataset and compared using AIC. Models were also fit to a reduced data set, which omitted eight sampling occasions, and compared based 
on the log-likelihood of the omitted data under forecasts generated by each model.

Model AIC ΔAIC
Forecast 
log-likelihood N̂ �̂move (km)

AC-null 14129.25 841.79 −953.98 239.5 (229.7–255.2) 35.0 (30.3–40.5)

AC-full 13683.53 396.07 −925.37 238.6 (229.2–253.6) 37.7 (31.6–44.9)

SRW-null 13593.79 306.33 −918.50 270.4 (252.6–296.4) 26.8 (24.5–29.3)

SRW-full 13306.88 19.42 −899.48 253.9 (240.3–274.6) 34.4 (30.8–38.4)

CRW-null 13617.53 330.07 −920.49 281.7 (261.0–311.5) 27.2 (17.8–36.5)

CRW-full 13287.46 0 −919.35 289.9 (267.9–320.9) 27.8 (20.7–37.4)

F I G U R E  2  Example forecasts over 3 days following the detection of a right whale at the point with an X through it and circled in the left-
most panels. From left to right, panels depict the initial location where the whale was observed, then forecasts for the whale's location 1, 2 
and 3 days in the future. The forecasts on the top set of panels were generated from the simple random walk model with quadratic effects 
of depth and sea surface temperature and a linear effect of wind speed. The forecasts on the bottom set of panels were generated from the 
simple random walk model that did not include covariate effects. Contours represent the 25%, 50%, 75% and 95% prediction intervals.
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Our simulation study demonstrated that integrated SCR move-
ment models have the potential to produce properly calibrated 
forecasts of individuals' future movements based only on sparse 
SCR data. However, mismatches between the forecasting and sim-
ulating models led to poorly calibrated forecasts that performed in-
creasingly poorly as the forecast extended farther into the future. 
Therefore, we advise testing multiple realistic movement models 
and comparing their performance in out-of-sample prediction be-
fore using a model's forecasts. In some cases, SCR data alone may 
not provide enough information to fit a realistic movement model. 
For instance, the correlated RW model estimated the γ and ω pa-
rameters, which describe the correlation of movement trajectories, 
with low precision in our simulation study (Appendix  1), and the 
correlated RW model fit to right whale data predicted right whale 
movements worse than the simple RW model. In such cases, addi-
tional information such as tagging data, which can increase the num-
ber of recaptures on consecutive sampling occasions, or individuals' 
directions and speeds of travel at the time of observation, which can 
be used to infer past and future locations, may need to be included 
in the analysis (Gardner et al., 2022; McClintock et al., 2021).

Forecasts are also affected by the uncertainty regarding in-
dividuals' current locations. This uncertainty increases as the 
amount of time since an individual was last observed increases, 
as the effectiveness and coverage of the detection process de-
crease, and as the scale of an individual's movement increases. 
Therefore, forecasts will be most informative for individuals that 
were observed recently, in systems that are subject to consistent 
and efficient sampling, and for species that move short distances. 
Hidden Markov models propagate the uncertainty regarding in-
dividuals' locations through their forecasts and account for the 
stochastic nature of the movement process. When none of the 
aforementioned conditions are met, the region in which an individ-
ual is forecasted to be located may be too large to be meaningful. 
In our right whale case study, forecasts may only be useful for a 
few days after an individual is observed, because individuals were 
estimated to move over 25 km per day on average. Still, females 
with calves, the demographic group of greatest importance to 
the population, are observed frequently in the Southeast (Gowan 
et al., 2019; Krzystan et al., 2018). Forecasts of their movements 
would likely be of greatest interest and could be information rich 
due to the frequency of their sightings.

In addition to describing an approach to forecast the movements 
of wildlife, we describe a maximum likelihood estimator for inte-
grated SCR movement models. Most studies that integrated SCR and 
movement models have used a Bayesian approach, although Glennie 
et al. (2019) described a simple RW for activity centres, and Dupont 
et al. (2021) model the movements of tagged individuals with biased 
RWs, both using maximum likelihood estimation. We found that our 
models computed considerably faster when implemented with maxi-
mum likelihood estimation than with a Bayesian framework. However, 
maximum likelihood estimation may require a sparse matrix imple-
mentation when modelling movement at finer spatial scales, because 
the computation required for our implementation is proportional to 

the square of the number of subregions or states in the model (Zuc-
chini et al., 2016). Additionally, a Bayesian approach may be easier and 
more flexible to implement, especially with software such as NIMBLE, 
which allows user-defined functions to be used in the model (de Val-
pine et al., 2017; Hostetter et al., 2022; Turek et al., 2021).

Much effort has been expended to project the distribution of 
wildlife populations in the long-term future (Payne et al.,  2017), 
while only Randon et al. (2022) have developed near-term forecast-
ing of wildlife movements. Integrated SCR movement models have 
only recently been developed and have many potential applications, 
including near-term movement forecasting. These models can fore-
cast the movements of all individuals in a population of interest, 
whether they have been tagged, previously observed, or neither. In 
study systems with consistent and efficient SCR sampling, forecasts 
can provide valuable information to improve wildlife monitoring and 
threat mitigation activities.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Appendix 1. Supplemental simulation study results.
Table S1. Parameter values used to simulate spatial capture–
recapture datasets.
Table S2. Average number of individuals detected per simulation (n) 
with 95% confidence intervals in parentheses and the proportion of 
individuals detected once, twice, etc. over 10 sampling occasions.
Table S3. Properties of spatial capture–recapture abundance 
estimates.
Table S4. Properties of spatial capture–recapture movement scale, 
σmove, estimates.

Table S5. Properties of spatial capture–recapture detection 
probability at zero distance from the detector, g0, estimates.
Table S6. Properties of spatial capture–recapture detection scale, 
σd, estimates.
Table S7. Properties of spatial capture–recapture random walk bias 
(ρ), persistence (γ), and turning angle (ω) estimates.
Table S8. Properties of spatial capture–recapture random walk bias, 
β, estimates.
Figure S1. One individual's simple random walk across the simulation 
state space during 10 sampling occasions.
Figure S2. The movement distribution for the individual from Figure 
1 between the first and second sampling occasions.
Figure S3. Ratios of the likelihoods of individuals' future locations 
under spatial capture–recapture models with activity centre and 
random walk movement models.
Figure S4. Calibration of individuals' forecasted locations over 10 
future sampling occasions (denoted by each panel's label) under 
spatial capture–recapture models with activity centre (red) and 
random walk (blue) movement models.
Figure S5. One individual's biased random walk across the simulation 
state space during 10 sampling occasions.
Figure S6. The movement distribution for the individual from Figure 
6 between the first and second sampling occasions.
Figure S7. Ratios of the likelihoods of individuals' future locations 
under spatial capture–recapture models with activity centre and 
biased random walk movement models (top) and random walk and 
biased random walk movement models (bottom).
Figure S8. Calibration of individuals' forecasted locations over 10 
future sampling occasions (denoted by each panel's label) under 
spatial capture–recapture models with activity centre (red), random 
walk (green), and biased random walk (blue) movement models.
Figure S9. One individual's correlated random walk across the 
simulation state space during 10 sampling occasions.
Figure S10. The movement distribution for the individual from Figure 
9 between the second and third sampling occasions.
Figure S11. Ratios of the likelihoods of individuals' future locations 
under spatial capture–recapture models with activity centre and 
correlated random walk movement models (top) and random walk 
and correlated random walk movement models (bottom).
Figure S12. Calibration of individuals' forecasted locations over 10 
future sampling occasions (denoted by each panel's label) under 
spatial capture–recapture models with activity centre (red), random 
walk (green), and correlated random walk (blue) movement models.
Figure S13. Ratios of the likelihoods of individuals' future locations 
under spatial capture–recapture models with activity centre and 
simple random walk movement models.
Figure S14. Calibration of individuals' forecasted locations over 10 
future sampling occasions (denoted by each panel's label) under 
spatial capture–recapture models with activity centre and simple 
random walk movement models.
Figure S15. Ratios of the likelihoods of individuals' future locations 
under spatial capture–recapture models with activity centre and 
simple random walk movement models.
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Figure S16. Calibration of individuals' forecasted locations over 10 
future sampling occasions (denoted by each panel's label) under 
spatial capture–recapture models with activity centre and simple 
random walk movement models.
Figure S17. Ratios of the likelihoods of individuals' future locations 
under spatial capture–recapture models with activity centre and 
simple random walk movement models.
Figure S18. Calibration of individuals' forecasted locations over 10 
future sampling occasions (denoted by each panel's label) under 
spatial capture–recapture models with activity centre and simple 
random walk movement models.
Figure S19. Ratios of the likelihoods of individuals' future locations 
under spatial capture–recapture models with activity centre and 
simple random walk movement models.
Figure S20. Calibration of individuals' forecasted locations over 10 
future sampling occasions (denoted by each panel's label) under 
spatial capture–recapture models with activity centre and simple 
random walk movement models.
Appendix 2. Supplemental north Atlantic right whale results.
Figure S1. Average expected (left) and realized (right) density of 

North Atlantic right whales off the Atlantic coast of Florida, Georgia, 
and South Carolina between 1 December 2009 and 31 March 2010.
Figure S2. Associations between North Atlantic right whale density 
and movement and depth (left), sea surface temperature (middle), 
and wind speed (right).
Figure S3. Estimated immigration, τ, (top) and persistence, φ, 
(bottom) rates and 95% confidence intervals for North Atlantic right 
whales in the southeastern United States from 1 December 2009 to 
31 March 2010.
Figure S4. Estimated detection probability for a North Atlantic right 
whale given its distance from the closest aerial survey trackline.
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